Prevalence, determination, and control of histamine formation in food concerning food safety aspect

Main Article Content

Chuyen Hoang
Thi-Van Nguyen
Thanh Do Le


control; detection; food safety; formation; histamine; poisoning


Histamine is a toxic metabolite produced in foods containing a high level of free histidine. This compound can be present in various food sources, especially seafood, dairy products, and fermented foods. Histamine poisoning is one of the most common health risks caused by consuming spoiled foods or improper processed and stored foods. This food poisoning usually causes mild symptoms with higher recovery rates, so people underestimate this hazard. Thus, understanding histamine formation food sources with a high risk for this poisonous agent is critical in improving the awareness of this hazard for food producers and consumers. To avoid histamine-associated food poisoning, the development of control solutions to minimize the formation of histamine and the sufficient detection methods to examine the content of this metabolite in food products are vital. In addition to quality control application and hazards management programs in food processing, the appropriate food regulations identifying the precise limit of histamine in foods are essential for preventing this poisoning from occurring in the food supply chain. This review discusses the prevalence, control strategies, detection techniques, and regulations related to histamine hazards in foods.

Abstract 317 | PDF Downloads 145 XML Downloads 5 HTML Downloads 22


Adams, F., Nolte, F., Colton, J., De Beer, J. and Weddig, L., 2018. Precooking as a control for histamine formation during the processing of tuna: an industrial process validation. Journal of Food Protection 81: 444–455.
Anastasio, A., Marrone, R., Chirollo, C., Smaldone, G., Attouchi, M., Adamo, P., et al. 2014. Swordfish steaks vacuum-packed with Rosmarinus officinalis. Italian Journal of Food Science 26: 390–397.
Ando, T., Kashiwakura, J.-i., Itoh-Nagato, N., Yamashita, H., Baba, M., Kawakami, Y., et al. 2017. Histamine-releasing factor enhances food allergy. The Journal of clinical investigation 127: 4541–4553.
Association of Official Analytical Collaboration International-Research Institute (AOAC-RI), 2021. PTM validated methods. Available at:
Auerswald, L., Morren, C. and Lopata, A.L., 2006. Histamine levels in seventeen species of fresh and processed South African seafood. Food Chemistry 98: 231–239.
Bangieva, D., Stratev, D. and Stoyanchev, T., 2020. Histamine level in freshwater and marine fish sold in Bulgarian markets. Journal of food quality and hazards control 7: 196–199.
Bartholomew, B.A., Berry, P., Rodhouse, J.C., Gilbert, R. and Murray, C., 1987. Scombrotoxic fish poisoning in Britain: features of over 250 suspected incidents from 1976 to 1986. Epidemiology & Infection 99: 775–782.
Bilgin, B. and Gençcelep, H., 2015. Determination of biogenic amines in fish products. Food science and biotechnology 24: 1907–1913.
Bjornsdottir‐Butler, K., Green, D.P., Bolton, G.E. and McClellan‐Green, P.D., 2015. Control of histamine‐producing bacteria and histamine formation in fish muscle by trisodium phosphate. Journal of Food Science 80: M1253–M1258.
Bodmer, S., Imark, C. and Kneubühl, M., 1999. Biogenic amines in foods: histamine and food processing. Inflammation research 48: 296–300.
Cicero, A., Galluzzo, F.G., Cammilleri, G., Pulvirenti, A., Giangrosso, G., Macaluso, A., et al. 2020. Development of a rapid and eco-friendly UHPLC analytical method for the detection of histamine in fish products. International Journal of Environmental Research and Public Health 17: 7453.
Cleide, O.d.A., Castro-Mejía, J.L., Krych, L. and Rattray, F.P., 2021. Histamine-forming ability of Lentilactobacillus parabucheri in reduced salt cheddar cheese. Food Microbiology 98: 103789. 10.1016/
Colombo, F.M., Cattaneo, P., Confalonieri, E. and Bernardi, C., 2018. Histamine food poisonings: a systematic review and meta-analysis. Critical reviews in food science and nutrition 58: 1131–1151.
Comas-Basté, O., Latorre-Moratalla, M.L., Sánchez-Pérez, S., Veciana-Nogués, M.T. and del Carmen Vidal-Carou, M., 2019. Histamine and other biogenic amines in food. From scombroid poisoning to histamine intolerance, Biogenic Amines. Charalampos Proestos, IntechOpen.
Comas-Basté, O., Sánchez-Pérez, S., Veciana-Nogués, M.T., Latorre-Moratalla, M. and Vidal-Carou, M.d.C., 2020. Histamine intolerance: the current state of the art. Biomolecules 10: 1181.
Coton, E., Rollan, G., Bertrand, A. and Lonvaud-Funel, A., 1998. Histamine-producing lactic acid bacteria in wines: early detection, frequency, and distribution. American Journal of Enology and Viticulture 49: 199–204.
Chaidoutis, E., Migdanis, A., Keramydas, D. and Papalexis, P., 2019. Biogenic amines in food as a public health concern. An outline of histamine food poisoning. Archives of Hellenic Medicine/Arheia Ellenikes Iatrikes 36: 419–425.
Chen, H.C., Kung, H.F., Chen, W.C., Lin, W.F., Hwang, D.F., Lee, Y.C. and Tsai, Y.H., 2008. Determination of histamine and histamine-forming bacteria in tuna dumpling implicated in a food-borne poisoning. Food Chemistry 106: 612.
Chin, K., Garriga, M. and Metcalfe, D., 1989. The histamine content of oriental foods. Food and chemical toxicology 27: 283–287.
Chomchai, S. and Chomchai, C., 2018. Histamine poisoning from insect consumption: an outbreak investigation from Thailand. Clinical Toxicology 56: 126–131.
Chung, S.P., 2019. Scombroid fish poisoning and histamine food poisoning. Journal of the Korean Society of Clinical Toxicology 17: 1–6.
Dalgaard, P. and Emborg, J., 2009. Histamine fish poisoning-new information to control a common seafood safety issue, Foodborne Pathogens. Elsevier, pp. 1140–1160.
Dang, A., Pesek, J.J. and Matyska, M.T., 2013. The use of aqueous normal phase chromatography as an analytical tool for food analysis: determination of histamine as a model system. Food Chemistry 141: 4226–4230.
Dasgupta, D., 2020. Histamine poisoning by bacteria. International Journal of Current Microbiology and Applied Sciences 9: 3457–3458.
DeBeer, J., Nolte, F., Lord, C.W. and Colley, J., 2021. Tempering large tuna prior to thawing to minimize histamine formation. Food Protection Trends 41: 38–45.
Del Rio, B., Redruello, B., Linares, D.M., Ladero, V., Fernandez, M., Martin, M.C., et al. 2017. The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture. Food Chemistry 218: 249–255.
Dewaal, C.S., Hicks, G., Barlow, K., Alderton, L. and Vegosen, L., 2006. Foods associated with foodborne illness outbreaks from 1990 through 2003. Food Protection Trends 26: 466–473.
Draisci, R., Volpe, G., Lucentini, L., Cecilia, A., Federico, R. and Palleschi, G., 1998. Determination of biogenic amines with an electrochemical biosensor and its application to salted anchovies. Food Chemistry 62: 225–232.
Duflos, G., Inglebert, G., Himber, C., Degremont, S., Lombard, B. and Brisabois, A., 2019. Validation of standard method EN ISO 19343 for the detection and quantification of histamine in fish and fishery products using high-performance liquid chromatography. International Journal of Food Microbiology 288: 97–101.
Durak-Dados, A., Michalski, M. and Osek, J., 2020. Histamine and other biogenic amines in food. Journal of Veterinary Research 64: 281–288.
European Food Safety Authority (EFSA), 2011. Scientific opinion on risk based control of biogenic amine formation in fermented foods. Available from:
European Food Safety Authority (EFSA), 2017. Assessment of the incidents of histamine intoxication in some EU countries. Available from:
European Food Safety Authority (EFSA), 2018. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2017. Available from:
Ekici, K. and Omer, A.K., 2018. The determination of some biogenic amines in Turkish fermented sausages consumed in Van. Toxicology Reports 5: 639–643.
EU Commission Regulation, 2013. No 1019/2013 of 23 October 2013 amending Annex I to Regulation (EC) No 2073/2005 as regards histamine in fishery products. Available from:
Food and Agriculture Organization/World Health Organization (FAO/WHO), 2018. Histamine in salmonids: joint FAO. WHO, Geneva, Switzerland. Available from:
Fariñas Cabrero, M.A., Berbel Hernández, C., Allué Tango, M., Díez Hillera, M. and Herrero Marcos, J.A., 2015. [Outbreak due to butterfish consumption: keriorrhea and histamine poisoning]. Revista espanola de salud publica 89: 99–105.
Food and Drug Administration (FDA), 2020. Outbreak investigation of scombrotoxin fish poisoning: yellowfin/ahi tuna (November 2019). Available from:
Food and Drug Administration (FDA), 2011. FDA fish and fishery products hazards and controls guidance. Rockville, MD: US Department of Health and Human Services, Food and Drug Administration. Available from:
Food and Drug Administration (FDA), 2019. Fish and fishery products hazards and controls guidance. Fourth ed. Food and Drug Administration. Available from:
Feng, C., Teuber, S. and Gershwin, M.E., 2016. Histamine (scombroid) fish poisoning: a comprehensive review. Clinical reviews in allergy & immunology 50: 64–69.
Fernandes, J., Judas, I., Oliveira, M., Ferreira, I.O. and Ferreira, M., 2001. A GC-MS method for quantitation of histamine and other biogenic amines in beer. Chromatographia 53: S327–S331.
Food Standards Australia New Zealand (FSANZ), 2009. Australia New Zealand food standards code–standard 2. Available from:
Food Standards Australia New Zealand (FSANZ), 2016. Imported food risk statement fish and fish products from the families specified and histamine. Available from:
Gagic, M., Jamroz, E., Krizkova, S., Milosavljevic, V., Kopel, P. and Adam, V., 2019. Current trends in detection of histamine in food and beverages. Journal of Agricultural and Food Chemistry 67: 773–783.
Gagic, M., Nejdl, L., Xhaxhiu, K., Cernei, N., Zitka, O., Jamroz, E., et al. 2020. Fully automated process for histamine detection based on magnetic separation and fluorescence detection. Talanta 212: 120789.
Gardini, F., Martuscelli, M., Caruso, M.C., Galgano, F., Crudele, M.A., Favati, F., et al. 2001. Effects of pH, temperature and NaCl concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. International Journal of Food Microbiology 64: 105–117.
Gellert, G.A., Ralls, J., Brown, C., Huston, J. and Merryman, R., 1992. Scombroid fish poisoning. Underreporting and prevention among noncommercial recreational fishers. Western Journal of Medicine 157: 645–647.
Gezginc, Y., Akyol, I., Kuley, E. and Özogul, F., 2013. Biogenic amines formation in Streptococcus thermophilus isolated from homemade natural yogurt. Food Chemistry 138: 655–662.
Gone, S., Kosa, N., Krebs, J., Hungerford, J., Trucksess, M. and DeWitt, C., 2018. Validation study of MaxSignal® histamine enzymatic assay for the detection of histamine in fish/seafood. Journal of AOAC International 101: 783–792.
Guizani, N., Al-Busaidy, M.A., Al-Belushi, I.M., Mothershaw, A. and Rahman, M.S., 2005. The effect of storage temperature on histamine production and the freshness of yellowfin tuna (Thunnus albacares). Food research international 38: 215–222.
Hajeb, P. and Selamat, J., 2012. A contemporary review of seafood allergy. Clinical reviews in allergy & immunology 42: 365–385.
Harmelin, Y., Hubiche, T., Pharaon, M. and Del Giudice, P., 2018. [Three cases of scombroid poisoning]. Ann Dermatol Venereol 145: 29–32.
Hattori, Y. and Seifert, R., 2017. Histamine and histamine receptors in health and disease. Springer. p. 241.
Hu, Y., Huang, Z., Li, J. and Yang, H., 2012. Concentrations of biogenic amines in fish, squid and octopus and their changes during storage. Food Chemistry 135: 2604–2611.
Hungerford, J. and Wu, W.-H., 2012. Comparison study of three rapid test kits for histamine in fish: BiooScientific MaxSignal enzymatic assay, Neogen Veratox ELISA, and the Neogen Reveal Histamine Screening test. Food Control 25: 448–457.
Hungerford, J.M., 2010. Scombroid poisoning: a review. Toxicon 56: 231–243.
Huss, H.H., Reilly, A. and Embarek, P.K.B., 2000. Prevention and control of hazards in seafood. Food Control 11: 149–156.
Hwang, B.-S., Wang, J.-T. and Choong, Y.-M., 2003. A rapid gas chromatographic method for the determination of histamine in fish and fish products. Food Chemistry 82: 329–334.
Hwang, C.-C., Kung, H.-F., Lin, C.-S., Hwang, D.-F. and Tsai, Y.-H., 2011. Bacteriological quality and histamine-forming bacteria associated with fish meats and environments in HACCP and non-HACCP fish processing factories. Food Control 22: 1657–1662.
Hwang, C.-C., Tseng, P.-H., Lee, Y.-C., Kung, H.-F., Huang, C.-Y., Chen, H.-C. and Tsai, Y.-H., 2019. Determination of histamine in Japanese Spanish mackerel (Scomberomorus niphonius) meat implicated in a foodborne poisoning. Journal of food protection 82: 1643–1649.
Ibranji, A., Nikolla, E., Loloci, G. and Mingomataj, E., 2015. A case report on transitory histamine intolerance from strawberry intake in a 15-month-old child with acute gastroenteritis. Clinical and Translational Allergy 5: P61.
Ienisetea, C., 1973. Significance and detection of histamine in food. Microbiological Safety of Food: 327–343.
Ijomah, P., Clifford, M., Walker, R., Wright, J., Hardy, R. and Murray, C., 1991. The importance of endogenous histamine relative to dietary histamine in the aetiology of scombrotoxicosis. Food Additives & Contaminants 8: 531–542.
Joenputri, N. and Suryana, K., 2020. Histamine toxicity resembles an allergic reaction: a case report. International Journal of Science and Research 9: 1208–1210.
Joosten, H., 1988. Conditions allowing the formation of biogenic amines in cheese. Netherlands Milk and Dairy Journal 42: 3–24.
Joosten, H. and Northolt, M., 1989. Detection, growth, and amine-producing capacity of lactobacilli in cheese. Applied and environmental microbiology 55: 2356–2359.
Juhlin, L. and Shelley, W.B., 1966. Detection of histamine by a new fluorescent o-phthalaldehyde stain. Journal of Histochemistry & Cytochemistry 14: 525–528.
Kanki, M., Yoda, T., Ishibashi, M. and Tsukamoto, T., 2004. Photobacterium phosphoreum caused a histamine fish poisoning incident. International Journal of Food Microbiology 92: 79–87.
Kang, C.R., Kim, Y.Y., Lee, J.I., Joo, H.D., Jung, S.W. and Cho, S.-I., 2018. An outbreak of scombroid fish poisoning associated with consumption of yellowtail fish in Seoul, Korea. Journal of Korean medical science 33: e235.
Kerr, M., Lawicki, P., Aguirre, S. and Rayner, C., 2002. Effect of storage conditions on histamine formation in fresh and canned tuna. Victoria, Australia: Public Health Divi Victor Gover Depart Human. p. 5–20.
Klausen, N.K. and Huss, H.H., 1987. Growth and histamine production by Morganella morganii under various temperature conditions. International Journal of Food Microbiology 5: 147–156.
Konakovsky, V., Focke, M., Hoffmann-Sommergruber, K., Schmid, R., Scheiner, O., Moser, P., et al. 2011. Levels of histamine and other biogenic amines in high-quality red wines. Food Additives and Contaminants 28: 408–416.
Koral, S., Tufan, B., Ščavničar, A., Kočar, D., Pompe, M. and Köse, S., 2013. Investigation of the contents of biogenic amines and some food safety parameters of various commercially salted fish products. Food Control 32: 597–606.
Kovacova-Hanuskova, E., Buday, T., Gavliakova, S. and Plevkova, J., 2015. Histamine, histamine intoxication and intolerance. Allergologia et immunopathologia 43: 498–506.
Kung, H.-F., Lee, Y.-C., Huang, Y.-R., Lin, W.-F., Lin, C.-M., Chen, W.-C. and Tsai, Y.-H., 2010. Biogenic amines content, histamine-forming bacteria, and adulteration of pork and poultry in tuna dumpling products. Food Control 21: 977–982.
Kung, H.-F., Tsai, Y.-H. and Wei, C.-I., 2007. Histamine and other biogenic amines and histamine-forming bacteria in miso products. Food Chemistry 101: 351–356.
Kung, H.F., Lee, Y.C., Tseng, Y.L., Huang, Y.L., Chen, T.Y. and Tsai, Y.H., 2016. Degradation of histamine in salted fish product by halotolerant Bacillus polymyxa. Journal of Food Safety 36: 325–331.
Khezri, M., Hosseininia, S.A.R. and Kamani, M.H., 2014. Determination of histamine in canned tuna using ELISA method. Trends in Life Sciences 3. Available from:
Lacorn, M., Garrido, G., Reck, B., Sutterlüti, M., Lindeke, S. and Meinhardt, P., 2019. Validation of the R-Biopharm AG RIDASCREEN® histamine (enzymatic) kit: AOAC performance tested methods SM 031901. Journal of AOAC International 102: 1472–1491.
Ladero, V., Calles-Enríquez, M., Fernández, M. and A Alvarez, M., 2010. Toxicological effects of dietary biogenic amines. Current Nutrition & Food Science 6: 145–156.
Ladero, V., Linares, D.M., Fernández, M. and Alvarez, M.A., 2008. Real time quantitative PCR detection of histamine-producing lactic acid bacteria in cheese: relation with histamine content. Food research international 41: 1015–1019.
Lehane, L. and Olley, J., 2000. Histamine fish poisoning revisited. International Journal of Food Microbiology 58: 1–37.
Leonard, B., 2011. Fish and fishery products: hazards and controls guidance. DIANE publishing.
Leuschner, R.G., Heidel, M. and Hammes, W.P., 1998. Histamine and tyramine degradation by food fermenting microorganisms. International Journal of Food Microbiology 39: 1–10.
Linares, D.M., Martín, M., Ladero, V., Alvarez, M.A. and Fernández, M., 2011. Biogenic amines in dairy products. Critical reviews in food science and nutrition 51: 691–703.
Mah, J.-H., Park, Y.K., Jin, Y.H., Lee, J.-H. and Hwang, H.-J., 2019. Bacterial production and control of biogenic amines in Asian fermented soybean foods. Foods 8: 85.
Maintz, L. and Novak, N., 2007. Histamine and histamine intolerance. The American journal of clinical nutrition 85: 1185–1196.
Masson, F., Talon, R. and Montel, M.-C., 1996. Histamine and tyramine production by bacteria from meat products. International Journal of Food Microbiology 32: 199–207.
McLaughlin, J. and Castrodale, L., 2019. Seven patients diagnosed with scombroid poisoning—Alaska, summer 2019. Headache 43: 3.
McNair, H.M., Miller, J.M. and Snow, N.H., 2019. Basic gas chromatography. John Wiley & Sons.
Mercogliano, R. and Santonicola, S., 2019. Scombroid fish poisoning: factors influencing the production of histamine in tuna supply chain. A review. LWT 114: 108374.
Møller, C.d.A., Ücok, E. and Rattray, F., 2020. Histamine forming behaviour of bacterial isolates from aged cheese. Food Research International 128: 108719.
Morrow, J.D., Margolies, G.R., Rowland, J. and Roberts, L.J., 1991. Evidence that histamine is the causative toxin of scombroid-fish poisoning. New England Journal of Medicine 324: 716–720.
Morroy, G., Ooms, D., Jansen, H.J., Dijkstra, J., van Drunen-Kamp, K.J. and Batstra-Blokpoel, J., 2018. [Fish-caused illness: notify food-related outbreaks to the Municipal Health Services]. Nederlands tijdschrift voor geneeskunde 162: D2155.
Moyano, A., Salvador, M., Martínez-García, J.C., Socoliuc, V., Vékás, L., Peddis, D., et al. 2019. Magnetic immunochromatographic test for histamine detection in wine. Analytical and Bioanalytical Chemistry 411: 6615–6624.
Nei, D., 2014. Evaluation of non-bacterial factors contributing to histamine accumulation in fish fillets. Food Control 35: 142–145.
O’Mahony, L., Akdis, M. and Akdis, C.A., 2011. Regulation of the immune response and inflammation by histamine and histamine receptors. Journal of Allergy and Clinical Immunology 128: 1153–1162.
Omura, Y., Price, R. and Olcott, H., 1978. Histamine - forming bacteria isolated from spoiled skipjack tuna and jack mackerel. Journal of Food Science 43: 1779–1781.
Önal, A., 2007. Current analytical methods for the determination of biogenic amines in foods. Food Chemistry 103: 1475–1486.
Ough, C.S., 1971. Measurement of histamine in California wines. Journal of Agricultural and Food Chemistry 19: 241–244.
Pan, B.S. and James, D., 1985. Histamine in marine products: production by bacteria, measurement and prediction of formation. Food & Agriculture Organization.
Petrovic, J., Babic, J., Jaksic, S., Kartalovic, B., Ljubojevic, D. and Cirkovic, M., 2016. Fish product–borne histamine intoxication outbreak and survey of imported fish and fish products in Serbia. Journal of Food Protection 79: 90–94.
Pierson, M.D., 2012. HACCP: principles and applications. Springer Science & Business Media.
Pogorzelski, E., 1992. Studies on the formation of histamine in must and wines from elderberry fruit. Journal of the Science of Food and Agriculture 60: 239–244.
Prabhakar, P.K., Vatsa, S., Srivastav, P.P. and Pathak, S.S., 2020. A comprehensive review on freshness of fish and assessment: analytical methods and recent innovations. Food research international 133: 109157.
Rogers, P.L. and Staruszkiewicz, W., 1997. Gas chromatographic method for putrescine and cadaverine in canned tuna and mahimahi and fluorometric method for histamine (minor modification of AOAC Official Method 977.13): collaborative study. Journal of AOAC International 80: 591–602.
Roig-Sagués, A.X., Molina, A.P. and Hernández-Herrero, M., 2002. Histamine and tyramine-forming microorganisms in Spanish traditional cheeses. European Food Research and Technology 215: 96–100.
Salleres, S., González, I., Arantzamendi, A., González, R., Maza, S., Jaureguibeitia, A., et al. 2016. Validation of the Biofish-300 HIS enzymatic biosensor for the detection of histamine in fishery products. Journal of AOAC International 99: 1338–1355.
Şanlı, T. and Şenel, E., 2015. Formation of biogenic amines in cheese, processing and impact on active components in food. Elsevier, pp. 223–230.
Sato, T., Horiuchi, T. and Nishimura, I., 2005. Simple and rapid determination of histamine in food using a new histamine dehydrogenase from Rhizobium sp. Analytical biochemistry 346: 320–326.
Schirone, M., Visciano, P., Tofalo, R. and Suzzi, G., 2016. Histamine food poisoning, histamine and histamine receptors in health and disease. Springer, pp. 217–235.
Shi, R., Feng, S., Park, C.Y., Park, K.Y., Song, J., Park, J.P., et al. 2020. Fluorescence detection of histamine based on specific binding bioreceptors and carbon quantum dots. Biosensors and Bioelectronics 167: 112519.
Shimoji, K., Bakke, M., Hungerford, J.M., Mireles DeWitt, C.A. and Köse, S., 2019. Validation study of histamine test for the determination of histamine in selected fish products. Journal of AOAC International 102: 164–180.
Shimoji, K., Isono, E. and Bakke, M., 2020. Modified enzymatic assays for the determination of histamine in fermented foods. Journal of Food Protection 83: 1430–1437.
Silva, C.M. and Glória, M.B.A., 2002. Bioactive amines in chicken breast and thigh after slaughter and during storage at 4±1 C and in chicken-based meat products. Food Chemistry 78: 241–248.
Smith, T.A., 1981. Amines in food. Food Chemistry 6: 169–200.
Stommel, E.W., 2007. Scombroid fish poisoning, foodborne diseases. Springer, pp. 375–381.
Stratton, J.E., Hutkins, R.W., Sumner, S.S. and Taylor, S.L., 1992. Histamine and histamine-producing bacteria in retail Swiss and low-salt cheeses. Journal of Food Protection 55: 435–439.
Sumner, S.S., Speckhard, M.W., Somers, E.B. and Taylor, S.L., 1985. Isolation of histamine-producing Lactobacillus buchneri from Swiss cheese implicated in a food poisoning outbreak. Applied and environmental microbiology 50: 1094–1096.
Surya, T., Sivaraman, B., Alamelu, V., Priyatharshini, A., Arisekar, U. and Sundhar, S., 2019. Rapid methods for histamine detection in fishery products. International Journal of Current Microbiology and Applied Sciences 8: 2035–2046.
Tao, Z., Sato, M., Yamaguchi, T. and Nakano, T., 2009. Formation and diffusion mechanism of histamine in the muscle of tuna fish. Food Control 20: 923–926.
Tao, Z., Sato, M., Zhang, H., Yamaguchi, T. and Nakano, T., 2011. A survey of histamine content in seafood sold in markets of nine countries. Food Control 22: 430–432.
Taylor, S.L., Lieber, E.R. and Leatherwood, M., 1978. A simplified method for histamine analysis of foods 1. Journal of Food Science 43: 247–250.
Taylor, S.L., 1985. Histamine poisoning associated with fish, cheese, and other foods, World Health Organization.
Taylor, S.L., Stratton, J.E. and Nordlee, J.A., 1989. Histamine poisoning (scombroid fish poisoning): an allergy-like intoxication. Journal of Toxicology: Clinical Toxicology 27: 225–240.
Tobeña, A., Dueñas, S. and Boix, M., 2020. Validation Study of BioSystems® Y15 histamine dehydrogenase kit for the detection of histamine in fish and fishery products: AOAC performance tested methodSM 072001. Journal of AOAC International. qsaa139.
Tsai, Y.-H., Kung, H.-F., Chang, S.-C., Lee, T.-M. and Wei, C.-I., 2007. Histamine formation by histamine-forming bacteria in douchi, a Chinese traditional fermented soybean product. Food Chemistry 103: 1305–1311.
Tsai, Y.-H., Kung, H.-F., Lin, Q.-L., Hwang, J.-H., Cheng, S.-H., Wei, C.-I. and Hwang, D.-F., 2005. Occurrence of histamine and histamine-forming bacteria in kimchi products in Taiwan. Food Chemistry 90: 635–641.
Tham, W., Karp, G. and Danielsson-Tham, M.-L., 1990. Histamine formation by enterococci in goat cheese. International Journal of Food Microbiology 11: 225–229.
Tran, Q.H., Nguyen, T.T. and Pham, K.P., 2020. Development of the high sensitivity and selectivity method for the determination of histamine in fish and fish sauce from Vietnam by UPLC-MS/MS. International journal of analytical chemistry 2020.
van Dijken, G.D., Uijttewaal, P.H., Logtenberg, S.J.J. and Sankatsing, S.U.C., 2020. [Scombroid food poisoning among hospital personnel], Nederlands tijdschrift voor geneeskunde. 164 .
Velut, G., Delon, F., Mérigaud, J.P., Tong, C., Duflos, G., Boissan, F., et al. 2019. Histamine food poisoning: a sudden, large outbreak linked to fresh yellowfin tuna from Reunion Island, France, April 2017. Eurosurveillance 24:
Verkhivker, Y. and Altman, E., 2018. Influence parameters of storage on process of formation the histamine in fish and fish products. Journal of Water Resources and Ocean Science7: 10–14.
Verma, N., Hooda, V., Gahlaut, A., Gothwal, A. and Hooda, V., 2020. Enzymatic biosensors for the quantification of biogenic amines: a literature update. Critical Reviews in Biotechnology 40: 1–14.
Vidal-Carou, M., Izquierdo-Pulido, M. and Martin-Morro, M., 1990. Histamine and tyramine in meat products: relationship with meat spoilage. Food Chemistry 37: 239–249.
Visciano, P., Schirone, M. and Paparella, A., 2020. An overview of histamine and other biogenic amines in fish and fish products. Foods 9: 1795.
Visciano, P., Schirone, M., Tofalo, R. and Suzzi, G., 2014. Histamine poisoning and control measures in fish and fishery products. Frontiers in microbiology 5: 500.
World Health Organization (WHO), 1982. Factors contributing to outbreaks of food poisoning. Available from:
Xu, L., Zhou, J., Eremin, S., Dias, A.C. and Zhang, X., 2020. Development of ELISA and chemiluminescence enzyme immunoassay for quantification of histamine in drug products and food samples. Analytical and Bioanalytical Chemistry 412: 4739–4747.
Yoshida, T., Hamada, H., Murakawa, H., Yoshimoto, H., Tobino, T. and Toda, K., 2012. Determination of histamine in seafood by hydrophilic interaction chromatography/tandem mass spectrometry. Analytical sciences 28: 179–179.
Zare, D., Muhammad, K., Bejo, M.H. and Ghazali, H., 2013. Changes in urocanic acid, histamine, putrescine and cadaverine levels in Indian mackerel (Rastrelliger kanagurta) during storage at different temperatures. Food Chemistry 139: 320–325.
Zeng, Z., Shen, L., Li, X., Luo, T., Wei, X., Zhang, J., et al. 2014. Disruption of histamine H2 receptor slows heart failure progression through reducing myocardial apoptosis and fibrosis. Clinical science 127: 435–448.
Zhang, B., Sheng, W., Liu, Y., Huang, N., Zhang, W. and Wang, S., 2020. Multiplexed fluorescence immunoassay combined with magnetic separation using upconversion nanoparticles as multicolor labels for the simultaneous detection of tyramine and histamine in food samples. Analytica Chimica Acta 1130: 117–125.