Prevalence, determination, and control of histamine formation in food concerning food safety aspect

Main Article Content

Chuyen Hoang
Thi-Van Nguyen
Thanh Do Le

Keywords

control; detection; food safety; formation; histamine; poisoning

Abstract

Histamine is a toxic metabolite produced in foods containing a high level of free histidine. This compound can be present in various food sources, especially seafood, dairy products, and fermented foods. Histamine poisoning is one of the most common health risks caused by consuming spoiled foods or improper processed and stored foods. This food poisoning usually causes mild symptoms with higher recovery rates, so people underestimate this hazard. Thus, understanding histamine formation food sources with a high risk for this poisonous agent is critical in improving the awareness of this hazard for food producers and consumers. To avoid histamine-associated food poisoning, the development of control solutions to minimize the formation of histamine and the sufficient detection methods to examine the content of this metabolite in food products are vital. In addition to quality control application and hazards management programs in food processing, the appropriate food regulations identifying the precise limit of histamine in foods are essential for preventing this poisoning from occurring in the food supply chain. This review discusses the prevalence, control strategies, detection techniques, and regulations related to histamine hazards in foods.

Abstract 317 | PDF Downloads 145 XML Downloads 5 HTML Downloads 22

References

Adams, F., Nolte, F., Colton, J., De Beer, J. and Weddig, L., 2018. Precooking as a control for histamine formation during the processing of tuna: an industrial process validation. Journal of Food Protection 81: 444–455. https://doi.org/10.4315/0362-028X.JFP-17-276
Anastasio, A., Marrone, R., Chirollo, C., Smaldone, G., Attouchi, M., Adamo, P., et al. 2014. Swordfish steaks vacuum-packed with Rosmarinus officinalis. Italian Journal of Food Science 26: 390–397.
Ando, T., Kashiwakura, J.-i., Itoh-Nagato, N., Yamashita, H., Baba, M., Kawakami, Y., et al. 2017. Histamine-releasing factor enhances food allergy. The Journal of clinical investigation 127: 4541–4553. https://doi.org/10.1172/jci96525
Association of Official Analytical Collaboration International-Research Institute (AOAC-RI), 2021. PTM validated methods. Available at: https://members.aoac.org/AOAC/PTM_Validated_Methods.aspx
Auerswald, L., Morren, C. and Lopata, A.L., 2006. Histamine levels in seventeen species of fresh and processed South African seafood. Food Chemistry 98: 231–239. https://doi.org/10.1016/j.foodchem.2005.05.071
Bangieva, D., Stratev, D. and Stoyanchev, T., 2020. Histamine level in freshwater and marine fish sold in Bulgarian markets. Journal of food quality and hazards control 7: 196–199. https://doi.org/10.18502/jfqhc.7.4.4848
Bartholomew, B.A., Berry, P., Rodhouse, J.C., Gilbert, R. and Murray, C., 1987. Scombrotoxic fish poisoning in Britain: features of over 250 suspected incidents from 1976 to 1986. Epidemiology & Infection 99: 775–782. https://doi.org/10.1017/s0950268800066632
Bilgin, B. and Gençcelep, H., 2015. Determination of biogenic amines in fish products. Food science and biotechnology 24: 1907–1913. https://doi.org/10.1007/s10068-015-0251-4
Bjornsdottir‐Butler, K., Green, D.P., Bolton, G.E. and McClellan‐Green, P.D., 2015. Control of histamine‐producing bacteria and histamine formation in fish muscle by trisodium phosphate. Journal of Food Science 80: M1253–M1258. https://doi.org/10.1111/1750-3841.12875
Bodmer, S., Imark, C. and Kneubühl, M., 1999. Biogenic amines in foods: histamine and food processing. Inflammation research 48: 296–300. https://doi.org/10.1007/s000110050463
Cicero, A., Galluzzo, F.G., Cammilleri, G., Pulvirenti, A., Giangrosso, G., Macaluso, A., et al. 2020. Development of a rapid and eco-friendly UHPLC analytical method for the detection of histamine in fish products. International Journal of Environmental Research and Public Health 17: 7453. https://doi.org/10.3390/ijerph17207453
Cleide, O.d.A., Castro-Mejía, J.L., Krych, L. and Rattray, F.P., 2021. Histamine-forming ability of Lentilactobacillus parabucheri in reduced salt cheddar cheese. Food Microbiology 98: 103789. https://doi.org/103789. 10.1016/j.fm.2021.103789
Colombo, F.M., Cattaneo, P., Confalonieri, E. and Bernardi, C., 2018. Histamine food poisonings: a systematic review and meta-analysis. Critical reviews in food science and nutrition 58: 1131–1151. https://doi.org/10.1080/10408398.2016.1242476
Comas-Basté, O., Latorre-Moratalla, M.L., Sánchez-Pérez, S., Veciana-Nogués, M.T. and del Carmen Vidal-Carou, M., 2019. Histamine and other biogenic amines in food. From scombroid poisoning to histamine intolerance, Biogenic Amines. Charalampos Proestos, IntechOpen. https://doi.org/10.5772/intechopen.84333
Comas-Basté, O., Sánchez-Pérez, S., Veciana-Nogués, M.T., Latorre-Moratalla, M. and Vidal-Carou, M.d.C., 2020. Histamine intolerance: the current state of the art. Biomolecules 10: 1181. https://doi.org/10.5772/intechopen.84333
Coton, E., Rollan, G., Bertrand, A. and Lonvaud-Funel, A., 1998. Histamine-producing lactic acid bacteria in wines: early detection, frequency, and distribution. American Journal of Enology and Viticulture 49: 199–204.
Chaidoutis, E., Migdanis, A., Keramydas, D. and Papalexis, P., 2019. Biogenic amines in food as a public health concern. An outline of histamine food poisoning. Archives of Hellenic Medicine/Arheia Ellenikes Iatrikes 36: 419–425.
Chen, H.C., Kung, H.F., Chen, W.C., Lin, W.F., Hwang, D.F., Lee, Y.C. and Tsai, Y.H., 2008. Determination of histamine and histamine-forming bacteria in tuna dumpling implicated in a food-borne poisoning. Food Chemistry 106: 612. https://doi.org/10.1016/j.foodchem.2007.06.020
Chin, K., Garriga, M. and Metcalfe, D., 1989. The histamine content of oriental foods. Food and chemical toxicology 27: 283–287. https://doi.org/10.1016/0278-6915(89)90129-4
Chomchai, S. and Chomchai, C., 2018. Histamine poisoning from insect consumption: an outbreak investigation from Thailand. Clinical Toxicology 56: 126–131. https://doi.org/10.1080/15563650.2017.1349320
Chung, S.P., 2019. Scombroid fish poisoning and histamine food poisoning. Journal of the Korean Society of Clinical Toxicology 17: 1–6. https://doi.org/10.22537/jksct.17.1.1
Dalgaard, P. and Emborg, J., 2009. Histamine fish poisoning-new information to control a common seafood safety issue, Foodborne Pathogens. Elsevier, pp. 1140–1160. https://doi.org/10.1533/9781845696337.3.1140
Dang, A., Pesek, J.J. and Matyska, M.T., 2013. The use of aqueous normal phase chromatography as an analytical tool for food analysis: determination of histamine as a model system. Food Chemistry 141: 4226–4230. https://doi.org/10.1016/j.foodchem.2013.06.005
Dasgupta, D., 2020. Histamine poisoning by bacteria. International Journal of Current Microbiology and Applied Sciences 9: 3457–3458. https://doi.org/10.20546/ijcmas.2020.908.400
DeBeer, J., Nolte, F., Lord, C.W. and Colley, J., 2021. Tempering large tuna prior to thawing to minimize histamine formation. Food Protection Trends 41: 38–45.
Del Rio, B., Redruello, B., Linares, D.M., Ladero, V., Fernandez, M., Martin, M.C., et al. 2017. The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture. Food Chemistry 218: 249–255. https://doi.org/10.1016/j.foodchem.2016.09.046
Dewaal, C.S., Hicks, G., Barlow, K., Alderton, L. and Vegosen, L., 2006. Foods associated with foodborne illness outbreaks from 1990 through 2003. Food Protection Trends 26: 466–473.
Draisci, R., Volpe, G., Lucentini, L., Cecilia, A., Federico, R. and Palleschi, G., 1998. Determination of biogenic amines with an electrochemical biosensor and its application to salted anchovies. Food Chemistry 62: 225–232. https://doi.org/10.1016/s0308-8146(97)00167-2
Duflos, G., Inglebert, G., Himber, C., Degremont, S., Lombard, B. and Brisabois, A., 2019. Validation of standard method EN ISO 19343 for the detection and quantification of histamine in fish and fishery products using high-performance liquid chromatography. International Journal of Food Microbiology 288: 97–101. https://doi.org/10.1016/j.ijfoodmicro.2018.07.023
Durak-Dados, A., Michalski, M. and Osek, J., 2020. Histamine and other biogenic amines in food. Journal of Veterinary Research 64: 281–288. https://doi.org/10.2478/jvetres-2020-0029
European Food Safety Authority (EFSA), 2011. Scientific opinion on risk based control of biogenic amine formation in fermented foods. Available from: https://doi.org/10.2903/j.efsa.2011.2393
European Food Safety Authority (EFSA), 2017. Assessment of the incidents of histamine intoxication in some EU countries. Available from: https://doi.org/10.2903/sp.efsa.2017.EN-1301
European Food Safety Authority (EFSA), 2018. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2017. Available from: https://doi.org/10.2903/j.efsa.2010.1496
Ekici, K. and Omer, A.K., 2018. The determination of some biogenic amines in Turkish fermented sausages consumed in Van. Toxicology Reports 5: 639–643. https://doi.org/10.1016/j.toxrep.2018.05.008
EU Commission Regulation, 2013. No 1019/2013 of 23 October 2013 amending Annex I to Regulation (EC) No 2073/2005 as regards histamine in fishery products. Available from: http://data.europa.eu/eli/reg/2013/1019/oj
Food and Agriculture Organization/World Health Organization (FAO/WHO), 2018. Histamine in salmonids: joint FAO. WHO, Geneva, Switzerland. Available from: http://www.fao.org/3/CA1207EN/ca1207en.pdf
Fariñas Cabrero, M.A., Berbel Hernández, C., Allué Tango, M., Díez Hillera, M. and Herrero Marcos, J.A., 2015. [Outbreak due to butterfish consumption: keriorrhea and histamine poisoning]. Revista espanola de salud publica 89: 99–105. https://doi.org/10.4321/S1135-57272015000100011
Food and Drug Administration (FDA), 2020. Outbreak investigation of scombrotoxin fish poisoning: yellowfin/ahi tuna (November 2019). Available from: https://www.fda.gov/food/outbreaks-foodborne-illness/outbreak-investigation-scombrotoxin-fish-poisoning-yellowfinahi-tuna-november-2019
Food and Drug Administration (FDA), 2011. FDA fish and fishery products hazards and controls guidance. Rockville, MD: US Department of Health and Human Services, Food and Drug Administration. Available from: https://www.fda.gov/food/seafood-guidance-documents-regulatory-information/fish-and-fishery-products-hazards-and-controls
Food and Drug Administration (FDA), 2019. Fish and fishery products hazards and controls guidance. Fourth ed. Food and Drug Administration. Available from: https://www.fda.gov/media/80637/download
Feng, C., Teuber, S. and Gershwin, M.E., 2016. Histamine (scombroid) fish poisoning: a comprehensive review. Clinical reviews in allergy & immunology 50: 64–69. https://doi.org/10.1007/s12016-015-8467-x
Fernandes, J., Judas, I., Oliveira, M., Ferreira, I.O. and Ferreira, M., 2001. A GC-MS method for quantitation of histamine and other biogenic amines in beer. Chromatographia 53: S327–S331. https://doi.org/10.1007/bf02490351
Food Standards Australia New Zealand (FSANZ), 2009. Australia New Zealand food standards code–standard 2. Available from: https://www.legislation.gov.au/Details/F2011C00569
Food Standards Australia New Zealand (FSANZ), 2016. Imported food risk statement fish and fish products from the families specified and histamine. Available from: https://www.foodstandards.gov.au/consumer/importedfoods/Documents/Fish%20and%20fish%20products%20and%20histamine.pdf
Gagic, M., Jamroz, E., Krizkova, S., Milosavljevic, V., Kopel, P. and Adam, V., 2019. Current trends in detection of histamine in food and beverages. Journal of Agricultural and Food Chemistry 67: 773–783. https://doi.org/10.1021/acs.jafc.8b05515
Gagic, M., Nejdl, L., Xhaxhiu, K., Cernei, N., Zitka, O., Jamroz, E., et al. 2020. Fully automated process for histamine detection based on magnetic separation and fluorescence detection. Talanta 212: 120789. https://doi.org/10.1016/j.talanta.2020.120789
Gardini, F., Martuscelli, M., Caruso, M.C., Galgano, F., Crudele, M.A., Favati, F., et al. 2001. Effects of pH, temperature and NaCl concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. International Journal of Food Microbiology 64: 105–117. https://doi.org/10.1016/S0168-1605(00)00445-1
Gellert, G.A., Ralls, J., Brown, C., Huston, J. and Merryman, R., 1992. Scombroid fish poisoning. Underreporting and prevention among noncommercial recreational fishers. Western Journal of Medicine 157: 645–647.
Gezginc, Y., Akyol, I., Kuley, E. and Özogul, F., 2013. Biogenic amines formation in Streptococcus thermophilus isolated from homemade natural yogurt. Food Chemistry 138: 655–662. https://doi.org/10.1016/j.foodchem.2012.10.138
Gone, S., Kosa, N., Krebs, J., Hungerford, J., Trucksess, M. and DeWitt, C., 2018. Validation study of MaxSignal® histamine enzymatic assay for the detection of histamine in fish/seafood. Journal of AOAC International 101: 783–792. https://doi.org/10.5740/jaoacint.17-0289
Guizani, N., Al-Busaidy, M.A., Al-Belushi, I.M., Mothershaw, A. and Rahman, M.S., 2005. The effect of storage temperature on histamine production and the freshness of yellowfin tuna (Thunnus albacares). Food research international 38: 215–222. https://doi.org/10.1016/j.foodres.2004.09.011
Hajeb, P. and Selamat, J., 2012. A contemporary review of seafood allergy. Clinical reviews in allergy & immunology 42: 365–385. https://doi.org/10.1007/s12016-011-8284-9
Harmelin, Y., Hubiche, T., Pharaon, M. and Del Giudice, P., 2018. [Three cases of scombroid poisoning]. Ann Dermatol Venereol 145: 29–32. https://doi.org/1016/j.annder.2017.07.007
Hattori, Y. and Seifert, R., 2017. Histamine and histamine receptors in health and disease. Springer. p. 241. https://doi.org/10.1007/978-3-319-58194-1
Hu, Y., Huang, Z., Li, J. and Yang, H., 2012. Concentrations of biogenic amines in fish, squid and octopus and their changes during storage. Food Chemistry 135: 2604–2611. https://doi.org/10.1016/j.foodchem.2012.06.121
Hungerford, J. and Wu, W.-H., 2012. Comparison study of three rapid test kits for histamine in fish: BiooScientific MaxSignal enzymatic assay, Neogen Veratox ELISA, and the Neogen Reveal Histamine Screening test. Food Control 25: 448–457. https://doi.org/10.1016/j.foodcont.2011.11.007
Hungerford, J.M., 2010. Scombroid poisoning: a review. Toxicon 56: 231–243. https://doi.org/10.1016/j.toxicon.2010.02.006
Huss, H.H., Reilly, A. and Embarek, P.K.B., 2000. Prevention and control of hazards in seafood. Food Control 11: 149–156. https://doi.org/10.1016/S0956-7135(99)00087-0
Hwang, B.-S., Wang, J.-T. and Choong, Y.-M., 2003. A rapid gas chromatographic method for the determination of histamine in fish and fish products. Food Chemistry 82: 329–334. https://doi.org/10.1016/s0308-8146(03)00005-0
Hwang, C.-C., Kung, H.-F., Lin, C.-S., Hwang, D.-F. and Tsai, Y.-H., 2011. Bacteriological quality and histamine-forming bacteria associated with fish meats and environments in HACCP and non-HACCP fish processing factories. Food Control 22: 1657–1662. https://doi.org/10.1016/j.foodcont.2011.03.025
Hwang, C.-C., Tseng, P.-H., Lee, Y.-C., Kung, H.-F., Huang, C.-Y., Chen, H.-C. and Tsai, Y.-H., 2019. Determination of histamine in Japanese Spanish mackerel (Scomberomorus niphonius) meat implicated in a foodborne poisoning. Journal of food protection 82: 1643–1649. https://doi.org/10.4315/0362-028x.jfp-19-111
Ibranji, A., Nikolla, E., Loloci, G. and Mingomataj, E., 2015. A case report on transitory histamine intolerance from strawberry intake in a 15-month-old child with acute gastroenteritis. Clinical and Translational Allergy 5: P61. https://doi.org/10.1186/2045-7022-5-S3-P61
Ienisetea, C., 1973. Significance and detection of histamine in food. Microbiological Safety of Food: 327–343.
Ijomah, P., Clifford, M., Walker, R., Wright, J., Hardy, R. and Murray, C., 1991. The importance of endogenous histamine relative to dietary histamine in the aetiology of scombrotoxicosis. Food Additives & Contaminants 8: 531–542. https://doi.org/10.1080/02652039109374005
Joenputri, N. and Suryana, K., 2020. Histamine toxicity resembles an allergic reaction: a case report. International Journal of Science and Research 9: 1208–1210. https://doi.org/10.21275/ART20204295
Joosten, H., 1988. Conditions allowing the formation of biogenic amines in cheese. Netherlands Milk and Dairy Journal 42: 3–24.
Joosten, H. and Northolt, M., 1989. Detection, growth, and amine-producing capacity of lactobacilli in cheese. Applied and environmental microbiology 55: 2356–2359.
Juhlin, L. and Shelley, W.B., 1966. Detection of histamine by a new fluorescent o-phthalaldehyde stain. Journal of Histochemistry & Cytochemistry 14: 525–528. https://doi.org/10.1177/14.7.525
Kanki, M., Yoda, T., Ishibashi, M. and Tsukamoto, T., 2004. Photobacterium phosphoreum caused a histamine fish poisoning incident. International Journal of Food Microbiology 92: 79–87. https://doi.org/10.1016/j.ijfoodmicro.2003.08.019
Kang, C.R., Kim, Y.Y., Lee, J.I., Joo, H.D., Jung, S.W. and Cho, S.-I., 2018. An outbreak of scombroid fish poisoning associated with consumption of yellowtail fish in Seoul, Korea. Journal of Korean medical science 33: e235. https://doi.org/10.3346/jkms.2018.33.e235
Kerr, M., Lawicki, P., Aguirre, S. and Rayner, C., 2002. Effect of storage conditions on histamine formation in fresh and canned tuna. Victoria, Australia: Public Health Divi Victor Gover Depart Human. p. 5–20.
Klausen, N.K. and Huss, H.H., 1987. Growth and histamine production by Morganella morganii under various temperature conditions. International Journal of Food Microbiology 5: 147–156. https://doi.org/10.1016/0168-1605(87)90032-8
Konakovsky, V., Focke, M., Hoffmann-Sommergruber, K., Schmid, R., Scheiner, O., Moser, P., et al. 2011. Levels of histamine and other biogenic amines in high-quality red wines. Food Additives and Contaminants 28: 408–416. https://doi.org/10.1080/19440049.2010.551421
Koral, S., Tufan, B., Ščavničar, A., Kočar, D., Pompe, M. and Köse, S., 2013. Investigation of the contents of biogenic amines and some food safety parameters of various commercially salted fish products. Food Control 32: 597–606. https://doi.org/10.1016/j.foodcont.2013.01.043
Kovacova-Hanuskova, E., Buday, T., Gavliakova, S. and Plevkova, J., 2015. Histamine, histamine intoxication and intolerance. Allergologia et immunopathologia 43: 498–506. https://doi.org/10.1016/j.aller.2015.05.001
Kung, H.-F., Lee, Y.-C., Huang, Y.-R., Lin, W.-F., Lin, C.-M., Chen, W.-C. and Tsai, Y.-H., 2010. Biogenic amines content, histamine-forming bacteria, and adulteration of pork and poultry in tuna dumpling products. Food Control 21: 977–982. https://doi.org/10.1016/j.foodcont.2009.12.011
Kung, H.-F., Tsai, Y.-H. and Wei, C.-I., 2007. Histamine and other biogenic amines and histamine-forming bacteria in miso products. Food Chemistry 101: 351–356. https://doi.org/10.1016/j.foodchem.2005.12.057
Kung, H.F., Lee, Y.C., Tseng, Y.L., Huang, Y.L., Chen, T.Y. and Tsai, Y.H., 2016. Degradation of histamine in salted fish product by halotolerant Bacillus polymyxa. Journal of Food Safety 36: 325–331. https://doi.org/10.1111/jfs.12247
Khezri, M., Hosseininia, S.A.R. and Kamani, M.H., 2014. Determination of histamine in canned tuna using ELISA method. Trends in Life Sciences 3. Available from: https://profdoc.um.ac.ir/paper-abstract-1045527.html
Lacorn, M., Garrido, G., Reck, B., Sutterlüti, M., Lindeke, S. and Meinhardt, P., 2019. Validation of the R-Biopharm AG RIDASCREEN® histamine (enzymatic) kit: AOAC performance tested methods SM 031901. Journal of AOAC International 102: 1472–1491. https://doi.org/10.1093/jaoac/102.5.1472
Ladero, V., Calles-Enríquez, M., Fernández, M. and A Alvarez, M., 2010. Toxicological effects of dietary biogenic amines. Current Nutrition & Food Science 6: 145–156. https://doi.org/10.2174/157340110791233256
Ladero, V., Linares, D.M., Fernández, M. and Alvarez, M.A., 2008. Real time quantitative PCR detection of histamine-producing lactic acid bacteria in cheese: relation with histamine content. Food research international 41: 1015–1019. https://doi.org/10.1016/j.foodres.2008.08.001
Lehane, L. and Olley, J., 2000. Histamine fish poisoning revisited. International Journal of Food Microbiology 58: 1–37. https://doi.org/10.1016/s0168-1605(00)00296-8
Leonard, B., 2011. Fish and fishery products: hazards and controls guidance. DIANE publishing.
Leuschner, R.G., Heidel, M. and Hammes, W.P., 1998. Histamine and tyramine degradation by food fermenting microorganisms. International Journal of Food Microbiology 39: 1–10. https://doi.org/10.1016/s0168-1605(97)00109-8
Linares, D.M., Martín, M., Ladero, V., Alvarez, M.A. and Fernández, M., 2011. Biogenic amines in dairy products. Critical reviews in food science and nutrition 51: 691–703. https://doi.org/10.1080/10408398.2011.582813
Mah, J.-H., Park, Y.K., Jin, Y.H., Lee, J.-H. and Hwang, H.-J., 2019. Bacterial production and control of biogenic amines in Asian fermented soybean foods. Foods 8: 85. https://doi.org/10.3390/foods8020085
Maintz, L. and Novak, N., 2007. Histamine and histamine intolerance. The American journal of clinical nutrition 85: 1185–1196. https://doi.org/10.1093/ajcn/85.5.1185
Masson, F., Talon, R. and Montel, M.-C., 1996. Histamine and tyramine production by bacteria from meat products. International Journal of Food Microbiology 32: 199–207. https://doi.org/10.1016/0168-1605(96)01104-X
McLaughlin, J. and Castrodale, L., 2019. Seven patients diagnosed with scombroid poisoning—Alaska, summer 2019. Headache 43: 3.
McNair, H.M., Miller, J.M. and Snow, N.H., 2019. Basic gas chromatography. John Wiley & Sons. https://doi.org/10.1002/9781119450795
Mercogliano, R. and Santonicola, S., 2019. Scombroid fish poisoning: factors influencing the production of histamine in tuna supply chain. A review. LWT 114: 108374. https://doi.org/10.1016/j.lwt.2019.108374
Møller, C.d.A., Ücok, E. and Rattray, F., 2020. Histamine forming behaviour of bacterial isolates from aged cheese. Food Research International 128: 108719. https://doi.org/10.1016/j.foodres.2019.108719
Morrow, J.D., Margolies, G.R., Rowland, J. and Roberts, L.J., 1991. Evidence that histamine is the causative toxin of scombroid-fish poisoning. New England Journal of Medicine 324: 716–720. https://doi.org/10.1056/NEJM199103143241102
Morroy, G., Ooms, D., Jansen, H.J., Dijkstra, J., van Drunen-Kamp, K.J. and Batstra-Blokpoel, J., 2018. [Fish-caused illness: notify food-related outbreaks to the Municipal Health Services]. Nederlands tijdschrift voor geneeskunde 162: D2155.
Moyano, A., Salvador, M., Martínez-García, J.C., Socoliuc, V., Vékás, L., Peddis, D., et al. 2019. Magnetic immunochromatographic test for histamine detection in wine. Analytical and Bioanalytical Chemistry 411: 6615–6624. https://doi.org/10.1007/s00216-019-02031-6
Nei, D., 2014. Evaluation of non-bacterial factors contributing to histamine accumulation in fish fillets. Food Control 35: 142–145. https://doi.org/10.1016/j.foodcont.2013.06.037
O’Mahony, L., Akdis, M. and Akdis, C.A., 2011. Regulation of the immune response and inflammation by histamine and histamine receptors. Journal of Allergy and Clinical Immunology 128: 1153–1162. https://doi.org/10.1016/j.jaci.2011.06.051
Omura, Y., Price, R. and Olcott, H., 1978. Histamine - forming bacteria isolated from spoiled skipjack tuna and jack mackerel. Journal of Food Science 43: 1779–1781. https://doi.org/10.1111/j.1365-2621.1978.tb07412.x
Önal, A., 2007. Current analytical methods for the determination of biogenic amines in foods. Food Chemistry 103: 1475–1486. https://doi.org/10.1016/j.foodchem.2006.08.028
Ough, C.S., 1971. Measurement of histamine in California wines. Journal of Agricultural and Food Chemistry 19: 241–244. https://doi.org/10.1021/jf60174a038
Pan, B.S. and James, D., 1985. Histamine in marine products: production by bacteria, measurement and prediction of formation. Food & Agriculture Organization.
Petrovic, J., Babic, J., Jaksic, S., Kartalovic, B., Ljubojevic, D. and Cirkovic, M., 2016. Fish product–borne histamine intoxication outbreak and survey of imported fish and fish products in Serbia. Journal of Food Protection 79: 90–94. https://doi.org/10.4315/0362-028x.jfp-15-190
Pierson, M.D., 2012. HACCP: principles and applications. Springer Science & Business Media. https://doi.org/10.1007/978-1-4684-8818-0
Pogorzelski, E., 1992. Studies on the formation of histamine in must and wines from elderberry fruit. Journal of the Science of Food and Agriculture 60: 239–244. https://doi.org/10.1002/jsfa.2740600212
Prabhakar, P.K., Vatsa, S., Srivastav, P.P. and Pathak, S.S., 2020. A comprehensive review on freshness of fish and assessment: analytical methods and recent innovations. Food research international 133: 109157. https://doi.org/10.1016/j.foodres.2020.109157
Rogers, P.L. and Staruszkiewicz, W., 1997. Gas chromatographic method for putrescine and cadaverine in canned tuna and mahimahi and fluorometric method for histamine (minor modification of AOAC Official Method 977.13): collaborative study. Journal of AOAC International 80: 591–602. https://doi.org/10.1093/jaoac/80.3.591
Roig-Sagués, A.X., Molina, A.P. and Hernández-Herrero, M., 2002. Histamine and tyramine-forming microorganisms in Spanish traditional cheeses. European Food Research and Technology 215: 96–100. https://doi.org/10.1007/s00217-002-0521-2
Salleres, S., González, I., Arantzamendi, A., González, R., Maza, S., Jaureguibeitia, A., et al. 2016. Validation of the Biofish-300 HIS enzymatic biosensor for the detection of histamine in fishery products. Journal of AOAC International 99: 1338–1355. https://doi.org/10.5740/jaoacint.16-0180
Şanlı, T. and Şenel, E., 2015. Formation of biogenic amines in cheese, processing and impact on active components in food. Elsevier, pp. 223–230. https://doi.org/10.1016/B978-0-12-404699-3.00027-5
Sato, T., Horiuchi, T. and Nishimura, I., 2005. Simple and rapid determination of histamine in food using a new histamine dehydrogenase from Rhizobium sp. Analytical biochemistry 346: 320–326. https://doi.org/10.1016/j.ab.2005.09.005
Schirone, M., Visciano, P., Tofalo, R. and Suzzi, G., 2016. Histamine food poisoning, histamine and histamine receptors in health and disease. Springer, pp. 217–235. https://doi.org/10.1007/164_2016_54
Shi, R., Feng, S., Park, C.Y., Park, K.Y., Song, J., Park, J.P., et al. 2020. Fluorescence detection of histamine based on specific binding bioreceptors and carbon quantum dots. Biosensors and Bioelectronics 167: 112519. https://doi.org/10.1016/j.bios.2020.112519
Shimoji, K., Bakke, M., Hungerford, J.M., Mireles DeWitt, C.A. and Köse, S., 2019. Validation study of histamine test for the determination of histamine in selected fish products. Journal of AOAC International 102: 164–180. https://doi.org/10.4315/JFP-20-082
Shimoji, K., Isono, E. and Bakke, M., 2020. Modified enzymatic assays for the determination of histamine in fermented foods. Journal of Food Protection 83: 1430–1437.
Silva, C.M. and Glória, M.B.A., 2002. Bioactive amines in chicken breast and thigh after slaughter and during storage at 4±1 C and in chicken-based meat products. Food Chemistry 78: 241–248. https://doi.org/10.1016/S0308-8146(01)00404-6
Smith, T.A., 1981. Amines in food. Food Chemistry 6: 169–200. https://doi.org/10.1016/0308-8146(81)90008-X
Stommel, E.W., 2007. Scombroid fish poisoning, foodborne diseases. Springer, pp. 375–381. https://doi.org/10.1007/978-1-59745-501-5_14
Stratton, J.E., Hutkins, R.W., Sumner, S.S. and Taylor, S.L., 1992. Histamine and histamine-producing bacteria in retail Swiss and low-salt cheeses. Journal of Food Protection 55: 435–439. https://doi.org/10.4315/0362-028X-55.6.435
Sumner, S.S., Speckhard, M.W., Somers, E.B. and Taylor, S.L., 1985. Isolation of histamine-producing Lactobacillus buchneri from Swiss cheese implicated in a food poisoning outbreak. Applied and environmental microbiology 50: 1094–1096. https://doi.org/10.1128/AEM.50.4.1094-1096.1985
Surya, T., Sivaraman, B., Alamelu, V., Priyatharshini, A., Arisekar, U. and Sundhar, S., 2019. Rapid methods for histamine detection in fishery products. International Journal of Current Microbiology and Applied Sciences 8: 2035–2046. https://doi.org/10.20546/ijcmas.2019.803.242
Tao, Z., Sato, M., Yamaguchi, T. and Nakano, T., 2009. Formation and diffusion mechanism of histamine in the muscle of tuna fish. Food Control 20: 923–926. https://doi.org/10.1016/j.foodcont.2009.01.011
Tao, Z., Sato, M., Zhang, H., Yamaguchi, T. and Nakano, T., 2011. A survey of histamine content in seafood sold in markets of nine countries. Food Control 22: 430–432. https://doi.org/10.1016/j.foodcont.2010.09.018
Taylor, S.L., Lieber, E.R. and Leatherwood, M., 1978. A simplified method for histamine analysis of foods 1. Journal of Food Science 43: 247–250. https://doi.org/10.1111/j.1365-2621.1978.tb09783.x
Taylor, S.L., 1985. Histamine poisoning associated with fish, cheese, and other foods, World Health Organization. https://apps.who.int/iris/handle/10665/66407
Taylor, S.L., Stratton, J.E. and Nordlee, J.A., 1989. Histamine poisoning (scombroid fish poisoning): an allergy-like intoxication. Journal of Toxicology: Clinical Toxicology 27: 225–240. https://doi.org/10.3109/15563658908994420
Tobeña, A., Dueñas, S. and Boix, M., 2020. Validation Study of BioSystems® Y15 histamine dehydrogenase kit for the detection of histamine in fish and fishery products: AOAC performance tested methodSM 072001. Journal of AOAC International. qsaa139. https://doi.org/10.1093/jaoacint/qsaa139
Tsai, Y.-H., Kung, H.-F., Chang, S.-C., Lee, T.-M. and Wei, C.-I., 2007. Histamine formation by histamine-forming bacteria in douchi, a Chinese traditional fermented soybean product. Food Chemistry 103: 1305–1311. https://doi.org/10.1016/j.foodchem.2006.10.036
Tsai, Y.-H., Kung, H.-F., Lin, Q.-L., Hwang, J.-H., Cheng, S.-H., Wei, C.-I. and Hwang, D.-F., 2005. Occurrence of histamine and histamine-forming bacteria in kimchi products in Taiwan. Food Chemistry 90: 635–641. https://doi.org/10.1016/j.foodchem.2004.04.024
Tham, W., Karp, G. and Danielsson-Tham, M.-L., 1990. Histamine formation by enterococci in goat cheese. International Journal of Food Microbiology 11: 225–229. https://doi.org/10.1016/0168-1605(90)90015-W
Tran, Q.H., Nguyen, T.T. and Pham, K.P., 2020. Development of the high sensitivity and selectivity method for the determination of histamine in fish and fish sauce from Vietnam by UPLC-MS/MS. International journal of analytical chemistry 2020. https://doi.org/10.1155/2020/2187646
van Dijken, G.D., Uijttewaal, P.H., Logtenberg, S.J.J. and Sankatsing, S.U.C., 2020. [Scombroid food poisoning among hospital personnel], Nederlands tijdschrift voor geneeskunde. 164 .
Velut, G., Delon, F., Mérigaud, J.P., Tong, C., Duflos, G., Boissan, F., et al. 2019. Histamine food poisoning: a sudden, large outbreak linked to fresh yellowfin tuna from Reunion Island, France, April 2017. Eurosurveillance 24: https://doi.org/10.2807/1560-7917.ES.2019.24.22.1800405
Verkhivker, Y. and Altman, E., 2018. Influence parameters of storage on process of formation the histamine in fish and fish products. Journal of Water Resources and Ocean Science7: 10–14. https://doi.org/10.11648/j.wros.20180701.12
Verma, N., Hooda, V., Gahlaut, A., Gothwal, A. and Hooda, V., 2020. Enzymatic biosensors for the quantification of biogenic amines: a literature update. Critical Reviews in Biotechnology 40: 1–14. https://doi.org/10.1080/07388551.2019.1680600
Vidal-Carou, M., Izquierdo-Pulido, M. and Martin-Morro, M., 1990. Histamine and tyramine in meat products: relationship with meat spoilage. Food Chemistry 37: 239–249. https://doi.org/10.1016/0308-8146(90)90104-C
Visciano, P., Schirone, M. and Paparella, A., 2020. An overview of histamine and other biogenic amines in fish and fish products. Foods 9: 1795. https://doi.org/10.3390/foods9121795
Visciano, P., Schirone, M., Tofalo, R. and Suzzi, G., 2014. Histamine poisoning and control measures in fish and fishery products. Frontiers in microbiology 5: 500. https://doi.org/10.3389/fmicb.2014.00500
World Health Organization (WHO), 1982. Factors contributing to outbreaks of food poisoning. Available from: https://apps.who.int/iris/handle/10665/223935
Xu, L., Zhou, J., Eremin, S., Dias, A.C. and Zhang, X., 2020. Development of ELISA and chemiluminescence enzyme immunoassay for quantification of histamine in drug products and food samples. Analytical and Bioanalytical Chemistry 412: 4739–4747. https://doi.org/10.1007/s00216-020-02730-5
Yoshida, T., Hamada, H., Murakawa, H., Yoshimoto, H., Tobino, T. and Toda, K., 2012. Determination of histamine in seafood by hydrophilic interaction chromatography/tandem mass spectrometry. Analytical sciences 28: 179–179. https://doi.org/10.2116/analsci.28.179
Zare, D., Muhammad, K., Bejo, M.H. and Ghazali, H., 2013. Changes in urocanic acid, histamine, putrescine and cadaverine levels in Indian mackerel (Rastrelliger kanagurta) during storage at different temperatures. Food Chemistry 139: 320–325. https://doi.org/10.1016/j.foodchem.2012.12.040
Zeng, Z., Shen, L., Li, X., Luo, T., Wei, X., Zhang, J., et al. 2014. Disruption of histamine H2 receptor slows heart failure progression through reducing myocardial apoptosis and fibrosis. Clinical science 127: 435–448. https://doi.org/10.1042/CS20130716
Zhang, B., Sheng, W., Liu, Y., Huang, N., Zhang, W. and Wang, S., 2020. Multiplexed fluorescence immunoassay combined with magnetic separation using upconversion nanoparticles as multicolor labels for the simultaneous detection of tyramine and histamine in food samples. Analytica Chimica Acta 1130: 117–125. https://doi.org/10.1016/j.aca.2020.07.043